(OMP
110

Magic Methods + Operator
Overloads

Review

What are unique properties of the __init method? (What sets it apart from other methods?)

O oo NOULL S WN =

NNNRRRRBRRRRR B 2
NP SO WOWOWNOOUDAWNEROS

Review

"""Practice writing a class.

Definition
class Profile:

username: str
private: bool

def __init_ (self, username_input: str):
"""Create a new Profile object."""
self.username = username_input
self.private = True

def tweet(self, msg: str) —> None:
""UTf profile is public, print msg.
if self.private is False: # not self.private
| print(msg)

Instantiation

userl: Profile = Profile("110_rulez") # calls __init_ ()

userl.private = False
userl.tweet("00P is cool!")

Magic Methods

e Methods with built in functionality!
e Not called directly!
e Names start and end with two underscores (_<method name>_)

Question

When | call print(x), Python calls what magic method on x before printing?

Operator Overloads

e You can write magic methods to give operators
meaning!

e Think about operators you use on numbers that you'd
like to use on other objects, e.g. +, -, *, /, <, <=, efc...

e This is called operator overloading

Arithmetic Operator Overloads

+ __add__(self, other)

- __sub__(self, other)

* __mul__(self, other)
/ __truediv__(self, other)
** __pow__(self, other)

% __mod__{(self, other)

Comparison Operator Overloads

< __lt__(self, other)
> __gt__(self, other)
<= __le__(self, other)
>= __ge__(self, other)

__eq__(self, other)

__ne__{(self, other)

For each magic method call, what is self and (if applicable)
what is other?

str(a) __str__(self)
a+b __add__(self, other)
a-b __sub__(self, other)
a*b __mul__(self, other)
a<b __lt__(self, other)
== __eq__(self, other)

Diagramming

1 from __future__ import annotations

2

3 v class ShoppingGuide:

4

5 groceries: list[str]

6 budget: float

7 store: str

8

9 v def __init_ (self, groceries: list[str], budget: float, store: str):
10 self.groceries = groceries

11 self.budget = budget

12 self.store = store

13

14 - def __add__(self, more_money: float) -> ShoppingGuide:

15 return ShoppingGuide(self.groceries, self.budget + more_money, self.store)
16

17 my_plan: ShoppingGuide = ShoppingGuide(["apples", "kiwi"]l, 5.55, "Food Lion")
18 AJs_plan: ShoppingGuide = my_plan + 2.12

Extra Challenge

- Write a _str _ magic method that gives me all the information of a
ShoppingGuide object

- Change the _ _add magic method to add a list of more groceries instead of
adding money to the budget. (Note that it still shouldn’t modify self!)

1

Challenge Question!

*You are going to use union types so review those!

12

Union Types

Now that | have: def add(x: int, y: int = 1) —> int:
| return X + 'y

Say | want this function to work for ints or floats...

| can express this using Union:

def add(x: |{int | float, y: |int | float| = 1) -> [int | float:
| return x + vy

