
CL01

An Introduction to Coding

This part of the lecture…

● Little more lecture-y
● A little more vague

Why?
● A gentler introduction
● Want you to get a bigger picture of the little things we’re going to talk about later
● I don’t expect you to be able to do all of these things tomorrow… that’s what

this class is for!

Computational Thinking

● Strategic thought and problem-solving
● Can help perform a task better, faster, cheaper, etc.
● Examples:

○ Meal prepping
○ Making your class schedule
○ “Life Hacks”

Algorithms

Input is data given to an algorithm

An algorithm is a series of steps

An algorithm returns some result

An algorithm may be influenced by
its environment and it may
produce side-effects which
influence its environment.

Example: My dissertation

Algorithm

Discussion

What are examples of computational thinking that you use day to day?

What kind of algorithms do you use to implement these ideas?

What is an algorithm?

● A set of steps to solve a general problem
● Finite
● Can handle a problem of arbitrary size

Finding the Lowest Card in a Deck

● Go from left to right
● Remember the lowest card you’ve seen so far and compare it to the next

cards

Finding the Lowest Card

Low card:

Finding the Lowest Card

Low card:

Finding the Lowest Card

Low card:

Finding the Lowest Card

Low card:

Finding the Lowest Card

Low card:

Finding the Lowest Card

Low card:

Finding the Lowest Card

Low card:2 < 5?

Finding the Lowest Card

Low card:3 < 2?

Finding the Lowest Card

Low card:5 < 2?

Finding the Lowest Card

Low card:5 < 2?
Relational
Operator

Pseudocode

Looks like code, but simplified and readable.

Not meant to run on a computer.

Helps you outline what your algorithm is
going to look like.

You should be able to expand on your
pseudocode to help you write actual code!

If (going to hit stuff):
dont()

Finding the Lowest Card Pseudocode

● Go from left to right
● Remember the lowest card

you’ve seen so far and compare
it to the next cards

Pseudocode:

Finding the Lowest Card Pseudocode

● Go from left to right
● Remember the lowest card

you’ve seen so far and compare
it to the next cards

Pseudocode:

lowest_card = first card in deck

Finding the Lowest Card Pseudocode

● Go from left to right
● Remember the lowest card

you’ve seen so far and compare
it to the next cards

Pseudocode:

lowest_card = first card in deck

Assignment

Finding the Lowest Card Pseudocode

● Go from left to right
● Remember the lowest card

you’ve seen so far and compare
it to the next cards

Pseudocode:

lowest_card = first card in deck

Repeatedly until end of deck:

if current_card < lowest_card:

lowest_card = current_card

Finding the Lowest Card Pseudocode

● Go from left to right
● Remember the lowest card

you’ve seen so far and compare
it to the next cards

Pseudocode:

lowest_card = first card in deck

Repeatedly until end of deck:

if current_card < lowest_card:

lowest_card = current_card

Loop

Finding the Lowest Card Pseudocode

● Go from left to right
● Remember the lowest card

you’ve seen so far and compare
it to the next cards

Pseudocode:

lowest_card = first card in deck

Repeatedly until end of deck:

if current_card < lowest_card:

lowest_card = current_cardConditional

Finding the Lowest Card Pseudocode

● Go from left to right
● Remember the lowest card

you’ve seen so far and compare
it to the next cards

Pseudocode:

lowest_card = first card in deck

Repeatedly until end of deck:

if current_card < lowest_card:

lowest_card = current_cardRelational
Operator

Finding the Lowest Card Pseudocode

● Go from left to right
● Remember the lowest card

you’ve seen so far and compare
it to the next cards

find_lowcard(deck)

lowest_card = first card in deck

Repeatedly until end of deck:

if current_card < lowest_card:

lowest_card = current_card

Function

Takeaways

● Pseudocode: simple and readable version of algorithm that resembles code

● Assignment Operator: Assigns a variable some value

● Loop Statement: Repeatedly performs an action a fixed number of times

● Relational Operator: Compares two values

● Conditional Statement: A statement that only performs an action under certain conditions

● Function: Generalizes code to work for a generic input

Again, you don’t need to know these right now, but I want you to have a point of reference when

you do learn them!

Commenting

Commenting

● Comments are text meant to be read by you, not interpreted as code by
Python!

● To help you (or others) look back at your code and know what you were
thinking!

● Single line comment: # my comment here
● Multi-line comment

“““
Write multiple things here.
And more here.

”””

Objects and Data Types

Objects and Types

An object is typed unit of data in memory.

The object’s type classifies it to help the computer know how it should be
interpreted and represented.

Example types of data:

● Numerical
● Textual
● Sequences
● Grouping of different types

Numerical Built-In Types

● Integers
○ int
○ Zero or non-zero digit followed by zero or more integers (e.g. 100 is an

int but 0100 is not)

● Decimals (Or floats)
○ float
○ Not the only way to represent decimal numbers, but a very precise way

Textual Built-In Type

● Strings
○ str
○ A sequence (or string) of characters
○ Can be denoted using “ ”

Indexing

● Subscription syntax uses square brackets and allows you to access an item
in a sequence

● Index numbering starts from 0

Docstrings

● A string written at the top of every file to describe its purpose.
● Denoted with three quotations “““ ”””

Booleans

● bool
● Evaluates to True or False

Check an Object’s Type

● type()

Change an Object’s Type

● float()
● str()
● int()

Pause to practice:
Please do the LS on Gradescope!

