
CL02

Expressions

Expressions

● Something that evaluates at runtime
● Every expression evaluates to a specific typed value
● Examples

○ 1 + 2 * 3
○ 1
○ 1.0 * 2.0
○ “Hello” + “ World!”
○ 1 > 3

Numerical Operators
Operator Name Symbol

Addition +

Subtraction/Negation -

Multiplication *

Division /

Exponentiation **

Remainder “modulo” %

Addition +

● If numerical objects, add the values together
○ 1 + 1 → 2
○ 1.0 + 2.0 → 3.0

● If strings, concatenate them
○ “Comp” + “110” → “Comp110”

● The result type depends on the operands
○ float + float → float
○ int + int → int
○ float + int → float
○ int + float → float
○ str + str → str

Addition +

● If numerical objects, add the values together
○ 1 + 1 → 2
○ 1.0 + 2.0 → 3.0

● If strings, concatenate them
○ “Comp” + “110” → “Comp110”

● The result type depends on the operands
○ float + float → float
○ int + int → int
○ float + int → float
○ int + float → float
○ str + str → str

Question: What happens when you try to add incompatible types?

Subtraction/Negation -

● Meant strictly for numerical types
○ 3 - 2 → 1
○ 4.0 - 2.0 → 2.0
○ 4.0 - 2 → 2.0
○ - (1 + 1) → -2

● The result type depends on the operands
○ float - float → float
○ int - int → int
○ float - int → float
○ int - float → float

Multiplication *

● If numerical objects, multiply the values
○ 1 * 1 → 1
○ 1.0 * 2.0 → 2.0

● If string and int, repeat the string
○ “Hello” * 3 → “HelloHelloHello”

● The result type depends on the operands
○ float * float → float
○ int * int → int
○ float * int → float
○ int * float → float
○ str * int → str

Division /

● Meant strictly for numerical types
○ 3 / 2 → 1.5
○ 4.0 / 2.0 → 2.0
○ 4 / 2 → 2.0

● Division results in a float
○ float / float → float
○ int / int → float
○ float / int → float
○ int / float → float

Exponentiation **

● Meant strictly for numerical types
○ 2 ** 2 → 4
○ 2.0 ** 2.0 → 4.0

● The result type depends on the operands
○ float ** float → float
○ int ** int → int
○ float ** int → float
○ int ** float → float

Remainder “modulo”

● Calculates the remainder when you divide two numbers
● Meant strictly for numerical types

○ 5 % 2 → 1
○ 6 % 3 → 0

● The result type depends on the operands
○ int % int → int
○ float % float → float
○ float % int → float
○ int % float → float

● Note:
○ If x is even, x % 2 → 0
○ If x is odd, x % 2 → 1

Order Of Operations

● P ()
● E **
● MD * / %
● AS + -
● Tie? Evaluate Left to Right

Relational Operators
Operator Name Symbol

Equal? ==

Less than? <

Greater than? >

Less than or equal to? (At most) <=

Greater than or equal to? (At least) >=

Not equal? !=

Relational Operators

● Always result in a bool (True or False)
● Equals (==) and Not Equal (!=)

○ Can be used for all primitive types we’ve learned so far! (bool, int, float, str)
● Every other type

○ Just use on floats and ints
○ (Can technically use on all primitive types)

Practice! Simplify and Type

● 2 + 4 / 2 * 2

● 220 >= int((“1” + “1” + “0”) * 2)

Simplify: 2 + 4 / 2 * 2
(Reminder: P E M D A S)

Simplify: 2 + 4 / 2 * 2

What type is 2 + 4 / 2 * 2?

Simplify:
220 >= int((“1” + “1” + “0”) * 2)

Mods Practice! Simplify

● 7 % 2

● 8 % 4

● 7 % 4

● Any even number % 2

● Any odd number % 2

Pause to practice:
Please do the LS on Gradescope!

Variables

Variables

Declaration of a variable
<name>: <type> = <value>
students: int = 300
message: str = “Howdy!”

Update a variable
<name> = <new value>
students = 325
message = “See ya!”

User Input

User input

● input() function: prompts the user for input and returns the response
● Example

your_name: str = input(“What is your name?”)
Will store the user’s response as the variable your_name.

Pause to practice:
Please do the LS on Gradescope!

Conditionals

Recall: Finding the Lowest Card

Low card: If current card < low card,
make it the low card.

Low card:2 < 5?

Recall: Finding the Lowest Card

If current card < low card,
make it the low card.

Low card:3 < 2?

Recall: Finding the Lowest Card

If current card < low card,
make it the low card.

Low card:5 < 2?

Recall: Finding the Lowest Card

If current card < low card,
make it the low card.

Low card:5 < 2?

Recall: Finding the Lowest Card

If current card < low card,
make it the low card.

Low card:

Recall: Finding the Lowest Card

If current card < low card,
make it the low card.

Conditional Statement

if <something>:
<do something>

<rest of program>

True

Conditional Statements
bool

False

Conditional Statements

if <something>:
<do something>

else:
<do something else>

<rest of program> True False

Conditional Statements

if <something>:
<do something>

else:
<do something else>

<rest of program> True False

Discussion

What is a decision you make in your day-to-day that you can express as an
conditional (if-else) statement?

E.g. If I my assignment is due tomorrow, I start working on it. Else (it’s not due
tomorrow), I procrastinate another day.
(This is bad behavior and I don’t condone it!)

Conditional Statements

if <something> :
<do something>

else:
<do something else>

<more stuff outside of conditional> True False

Practice

Write a program that prints “Even” if my_number is even and “Odd” if my_number
is odd.
(Hint: You will want to use % and the relational operator == from LS03)

