
CL05:
Introduction to Functions



Functions

Let you generalize problems for different inputs

Allow you to take solutions you defined in one place of your program and reuse 
them in other places of your program file.. and even in other program files!

Help you abstract away from certain processes



Abstraction Example

● Ordering a pizza…
○ You order a large cheese pizza
○ You don’t need to think about how they make the crust, got the ingredients, how long they 

bake it for, etc.
● round(x)

○ You round 10.25 down to 10 by calling round(10.25)
○ You don’t think about line by line how the some program is making this rounding decision



Calling a Function

Function Call: expressions that result in (“return”) a specific type

Common expressions:
“Making a function call”
“Using a function”
“Invoking a function”

Looks like function_name(<inputs>)

E.g. print(“Hello”) , round(10.25), etc.



Examples…

print()

round()

randint()



Defining Functions

A function definitions are sub-programs that define what happens when a function 
is called.

Can be: 

● Built-in
● Imported in Libraries
● DIY - Define in your python file



Pause to practice:
Please do the LS on Gradescope!



Function Syntax



Syntax for Calling A Function

function_name(<inputs>)



Syntax for Calling A Function

function_name(<argument list>)

print(“hello”)

round(10.25)

randint(1,7)

randint(1,2+5)



Syntax for Defining A Function

def function_name(<parameter list>) -> <return type>:

“““Docstring describing function”””

<what your function does>



Syntax for Defining A Function

def function_name(<parameter list>) -> <return type>:

“““Docstring describing function”””

<what your function does>

Practice: Write a function called my_max 
that takes two ints: number1 and number2 as inputs

and returns the larger number.



function name parameter list return type



signature



Call vs. Signature

Call (for calling a function):
function_name(<argument list>)

my_max(11, 3)

Signature (for defining a function) :

def function_name(<parameter list>) -> <return type>:

def my_max(number1: int, number2: int) -> int:



Call vs. Signature

Call (for calling a function):
variable_name: <return type> = function_name(<argument list>)

x: int = my_max(11, 3)

Signature (for defining a function) :

def function_name(<parameter list>) -> <return type>:

def my_max(number1: int, number2: int) -> int:



Call vs. Signature

x: int = my_max(11, 3)

def my_max(number1: int, number2: int) -> int:



Call vs. Signature

x: int = my_max(11, 3)

def my_max(number1: int, number2: int) -> int:



Call vs. Signature

x: int = my_max(11, 3)

def my_max(number1: int, number2: int) -> int:



Call vs. Signature

x: int = my_max(11, 3)

def my_max(number1: int, number2: int) -> int:



Call vs. Signature

x: int = my_max(11, 3) 

def my_max(number1: int, number2: int) -> int:

“arguments”

“parameters”



Pause to practice:
Please do the LS on Gradescope!



Function Semantics





Function Call Steps

● Prepare for call:
○ Has function been defined?
○ Are arguments fully evaluated?
○ Do parameters and arguments agree?

● Establish frame for function call:
○ Frame on stack labeled with function name
○ Return address
○ Copy over arguments


